
Smart interactions
Child-robot interaction through movement

Niko Vegt (s030471)

2 3

M1.2 project
Coach: Emilia Barakova

External expertise:
OBS De Tweesprong
OBS De Hasselbraam
Sint Marie

Start: 02-09-2009
End: 08-01-2010

2 3

Content

Introduction� 4

Study objectives� 6
Introduction� 6
Problem statement� 7
Objectives� 7

Interaction scenario� 8
Introduction� 8
Scenario evaluation� 8
Scenario options� 9
Scenario description� 13

Technological platform implementation� 14
Introduction� 14
AdMoVeo� 15
Image processing� 16

User test� 18
Introduction� 18
Study design� 18
Setting� 20
Measurement procedure� 22
Sampling� 26

Data analysis� 27

Conclusion� 32

Discussion� 34

Acknowledgements� 36

References� 37

Appendix� 38
I. Work schedule� 38
II. AdMoVeo code� 40
 III. Image processing code� 43
IV. Serial communication in C++� 51
V. Image scenarios� 55
VI.Test protocol� 56
VII. Video analysis sheet 1� 57
VIII. Video analysis sheet 2� 58
IX. Video analysis results 2 (children combined)� 59
X. Video analysis results 2 (children separate)� 62

4 5

Introduction

Children with an autistic spectrum disorder
(ASD) lack development of social competence.
This results in problems with initiating contact
with other people and having no friends. The
amount of children diagnosed with an autistic
spectrum disorder is increasing and therefore
the demand for solutions helping these
children is growing as well.

In terms of participation to society autistic
children benefit from intensive education
in social behaviour [1]. The use of robots
for educative applications is increasing.
Especially autistic children respond positively
on interaction with robots and technology
in general. “Autistic children are fond of
technological toys” [2]. So deploying robots
in educating children with an autistic spectrum
disorder seems to be an obvious solution.
Teaching social competences through robots
is promising but to achieve this, the effect of
human robot interaction on social behaviour
needs to be investigated.

In [3]it is argued that “interaction with objects
is a developmental stage of social behaviour,
and that shortcomings in the motor level

of interaction can result in impaired social
behaviour.” Body movement appears to be
a valuable denominator for human emotions.
Autistic children tend to have difficulties
recognizing emotions through body language.
Therefore interactions specifically focused on
movements that elicit emotion are valuable
for social interaction education. Interaction
through movement with products or robots
is a fairly unexplored field though. Early tests
with synthesizing emotions with robots
through movement show promising results.
“A control group of 42 typically developing
children were tested to observe the robots
emotional behaviours. The outcome of the
tests showed a good recognition of several
basic emotions” [2].

Another topic in the field of technological
solutions for autistic children is multi-agent
systems (MAS). Tests with autistic children
show that playing with a multi-agent system
of coloured light blocks [4] encourages
explorative play, rather than repetitive play.
Multi-agent systems become more and more
used to control or analyse complex systems.
They might also be used to simulate the

4 5

complexity of social interaction. Parameters of
emotional movements are known and neural
network algorithms provide the opportunity
to filter and interpret emotion from complex
human movement patterns [5]. In relation to
communication through motion multi-agent
systems haven’t been investigated though.

Collaborative games with the blocks have
been tested. It became clear that autistic
children can be encouraged to make social
contact [6]. This is also shown in the research
by Legoff on using Lego© in therapy sessions
[1]. Autistic children increased their social
skills significantly after playing in couples with
Lego©. 

6 7

Study objectives

Introduction
Numerous publications seem to lead to a
relation between the development of motor
skills and social skills. The implementation of
interaction through movement is therefore
an interesting topic to investigate. Making
robots to encourage movement appeals to
the motor skills and might therefore stimulate
social activity. The relation between emotions
and motion agrees to this.

The synthesized emotions through
movement [2] seem not suitable for human-
robot interaction yet though. These kinds of
movement patterns are promising but not yet
controllable enough for valid implementation
in interaction scenarios. So in this test simplified
movement patterns are used.

In [3] it is mentioned that three types of
interaction can be implemented: “Robots that
imitate, enhance or counteract an emotional
state of a person”. Interesting to know is the
relation between the interaction behaviours
and social interaction.

This can only be tested if the context of the
test supports social interaction. At least two
children have to participate in interacting with
robots through movement. Giving them a
collaborative task will support social interaction
even more and the implementation of a multi-
agent system should arouse a more open
(explorative) attitude and encourage social
interaction as well [4]. These three contextual
elements should provide enough reason for
social interaction and enable a test on the
different interaction behaviours.

6 7

Problem statement
Main research question
Will counteracting, imitating or enhancing two
children’s hand movements by a multi-agent
system of robots encourage social interaction?

Sub research questions
1.	 Is teaching movement patterns an

engaging task?
2.	 To which extend will the children interpret

the behaviour of the MAS of moving
robots?

3.	 How do the children react on the different
interaction behaviours?

4.	 Does interaction through movement
enhance social interaction?

5.	 Is there a difference in social interaction
between a MAS communicating through
movement and a MAS communicating
through coloured lighting?

6.	 Is there a relation between the explorative
character of multi-agent games and the
enhancement of social interaction by the
multi-agent system?

Objectives
Main objectives
•	 To compare the amount of social

interaction between two children when
performing a collaborative task by
interacting with a multi-agent system that
imitates, counteracts or enhances hand
movement patterns.

•	 To quantify the relation between the multi-
agent system interaction behaviour and
the amount of social interaction occurring
during a collaboration task.

Sub objectives
•	 To propose guidelines for suitable

interactive behaviour of multi-agent
systems to enhance social interaction in a
collaboration task.

•	 To generate a vision on the use of multi-
agent systems for educating social skills to
groups of children.

8 9

Interaction scenario

Introduction
Several interaction scenarios that suited the
project objectives were explored to achieve
a more concrete research proposal. This
involved roughly two concept directions. The
first direction focused on a game with a multi-
agent system and two children. The second
direction was proposed to investigate the
interaction with a multi-agent system without
giving the children a task. The scenarios were
cooperative or competitive. This resulted in
four main scenario options.

Scenario evaluation
The cooperative game scenario appeared
to be most suitable to accommodate social
interaction between the children. The
competitive scenario involved a much more
individualistic approach. Implementing a task
in a game was supposed to be most engaging
to the children. Having a clear goal together
should result in increased involvement with the

task. The pure interaction scenarios enabled
the investigation of particular interaction
behaviour, where imitation was the main
focus. This would involve a more specialised
investigation whereas a broader exploration
(levelling the interaction behaviours) is more
useful to the field.

So in two directions the cooperative game
scenario was most interesting to develop.
Firstly it would be most appealing to the
children and therefore also come closest to an
actual educative implementation. This was also
confirmed by the reactions from the autism
experts at the Sint Marie educative centre
on the research proposal who proposed an
implementation in the TOM (theory of mind)
groups. The game scenario could suit an
imitation training. Secondly the research field
is suited best by exploring different interaction
behaviours on an even level instead of (on
beforehand) assuming a superior behaviour in
interaction through movement.

8 9

Scenario options
Cooperative game
•	 Robots perform five different patterns
•	 Children pick a movement they want to

teach
•	 Robots make random movements
•	 Children ask a robot for attention by

spreading their arms
•	 Children perform the movement
•	 Attended robots start imitating the

movement

•	 Surrounding robots take over slowly from
other robots

•	 When children shift the attention to
another robot the learning goes much
faster

•	 If the children are satisfied they stop
spreading their arms

•	 Robots keep on performing the learned
movement

Figure 1.  Cooperative game scenario

10 11

Competitive game
•	 Children receive a separate task to learn

the robots a movement (performed by
the robots)

•	 Children ask attention to a robot by
spreading their arms

•	 Children perform the movement to teach
the robot

•	 Other robots move randomly
•	 Other robots take over the performed

movement when they are close enough
•	 One child becomes more successful in

teaching the robots the movement
•	 Child that has taught all robots his/her

pattern wins

Figure 2.  Competitive game scenario

10 11

Interaction through imitation (children lead)
•	 Robots perform a series of different

patterns
•	 Children pick one movement pattern to

imitate
•	 Children spread their arms and start

imitating the chosen movement pattern

•	 Robots slowly filter all other movement
patterns from their behaviour

•	 Children and robots perform the same
movement

Figure 3.  Interaction through imitation scenario (child is leading)

12 13

Interaction through imitation (robots lead)
•	 Children perform series of movement

patterns
•	 Robots select one movement pattern to

imitate
•	 Robots start imitating the selected

movement pattern

•	 Children react on the robots’ reaction by
imitating, enhancing or counteracting

•	 Robots react on the children’s reaction

Figure 4.  Interaction through imitation scenario (robot is leading)

12 13

Scenario description

Three robots are standing on a table, waiting
to start a game. The goal of the game is to
teach three robots a movement pattern.
This pattern is firstly demonstrated by the
robots so that the children can rehearse
and memorize the pattern. Than the robots
stop the demonstration and perform neutral
behaviour: driving straight with collision and
table edge avoidance. The children need to
perform the movement pattern with one
hand above the table (for technical reasons). If
the children perform this movement together
the robots will respond. The responding
behaviour will differ per round. The robots
can imitate, enhance or counteract. When
they perform imitation behaviour the robots
will copy the children’s hand movement
accurately. The enhancing behaviour implies
very quick recognition of the children’s
movements. As soon as the children are
somewhat performing the same movement
the robots will perform the right pattern. In
counteraction mode the robots will not be
able to pick up the right movement pattern
but start performing different patterns. With

this behaviour the children aren’t able to finish
the game. So a round is finished if the robots
perform the right pattern or if three minutes
have passed.

Goal
 Teach the robots a movement
Means
 Rehearse the movement
 Perform the movement together

Scenario sequence
•	 Robots demonstrate a movement pattern
•	 Children need to describe and rehearse

the pattern
•	 Robots stop performing the demonstration
•	 Robots perform neutral behaviour
•	 Children have to teach the robots the

pattern through hand movement
•	 Children have to perform the movement

together
•	 Robots enhance, imitate or counteract

(differs per task)
•	 Robots stop if the right pattern is taught or

if 3 minutes have passed
•	 Game is repeated three times

14 15

Technological platform
implementation

Introduction
To accommodate the pattern teaching game
an autonomous platform was developed.
This involved image recognition, serial
communication and robot behaviour
handling. The movements of the children had
to be recognized from a webcam image and
processed to understand their movement
patterns. The result had to be communicated
to the robots and they had to respond
correspondingly. Figure 5.  Test setup

Figure 6.  Platform components

14 15

AdMoVeo
The robots used for the platform are
AdMoVeo robots [7]. They hold many sensors
and actuators accommodating a versatility of
applications. For this project the driving and
lighting functionality was involved as well as
sensors for autonomous collision avoidance
(Infrared distance sensors). They were
programmed in Arduino code (Appendix II)
involving autonomous behaviour that could
override communicated behaviour. Any
robot read serial communication through
an Xbee module. The behaviour related
to the different interaction behaviours was
communicated from laptop to robot. This
behaviour could be overruled by avoidance
of other robots or avoiding the edge of the
table. Neutral behaviour involved driving
straight and forward to show that they’re
active. Coloured lighting was used to enhance
the expression of certain behaviour, like the
recognition of the right or wrong movement
pattern (red or green light) and the overruling
collision avoidance behaviour (blue light).

Figure 7.  AdMoVeo robots

16 17

Image processing

The movements that the children would
make had to be recognized from an overview
perspective. A webcam was implemented
above a table to provide a top view image of
the children and game area. This video image
had to be processed so several programming
platforms were explored to generate reliable
data.

To get a better understanding of possible
errors that had to be taken care of, different
image scenarios were investigated (Appendix
V). They gave insight in how the children had
to be instructed and provided guidelines for
the technological implementation. It became
clear that the best way to recognize and
compare children’s hand movements would
involve separation of the video image in two
halves and asking the children to stand on
opposite sides of the table, corresponding to
the image division. This would ensure that
the recognized hands wouldn’t be mixed up
and that the recognized patterns from both
image parts could be compared. Restricting
the children to place only one hand above the
table would ease the recognition of a pattern

because it could be assumed that the colour-
tracked point resembled the hand that the
child was performing the movement with.

An implementation in the C++ language was
a strong solution in terms of achieving reliable
data from the image. TiViPE software [8]
could be used to recognize a hand and get its
place, speed and acceleration. This involved
serious expertise on programming though
and analysis methods had to be integrated yet,
as well as the communication to the robots.
A serial communication library in C++
[9] was found, modified and implemented
(Appendix IV) to steer the AdMoVeo robots.
This took more than a week but wasn’t the
major software element to develop though.
Therefore it was decided to shift to a different,
less time consuming programming platform.

Programming the image processing in
Processing was more accessible but less
accurate. Within the timeframe of this
project, it was the most feasible solution. A
module for communication with the robots,
colour recognition and a pattern recognition
algorithm [10] was available in JAVA. This

16 17

enabled the recognition of children’s hands
above a table, register and recognize patterns
in their movements and communicate this to
the robots. So the existing software modules

were modified to suit the platform and
integrated in one program (Appendix III) to
perform the image processing.

Figure 8.  Webcam top view image

18 19

User test

Introduction
In this chapter the actual research proposal
is described including the actual performance
of the tests (mainly in the paragraph about
the measurement procedure). They were
performed at primary schools with normally
developed children because autistic children
weren’t accessible in December. The time
needed to implement the platform reduced
the flexibility in planning the tests to this month.
The supervisors at the schools with autistic
children regarded December as too busy for
testing. So one pilot test and one actual test of
6 rounds was performed at different ordinary
primary schools.

The research proposal described below
(Study design paragraph) is developed for a
test with autistic children though. Therefore
it was agreed with the autism experts at Sint
Marie that a test with autistic children is going
to be performed after this writing in January.

Study design
The population targeted for this study is
children with an autistic spectrum disorder in
the age of 6 to 8. They have to be familiar
with participating in “cooperative play” [11].
The research of Parten shows that between
the age of 3 and 4 children start playing
together in an organized way. So it can be
assumed that at the age of 6 most of the
children are familiar with cooperative play.
The children also need to be familiar with the
concept of teaching, which is as well the case
at the age of 6 because they generally have
2 years of experience with having a teacher.
The complexity of the collaboration task the
children get is designed for this age group.

A cross-sectional study will be performed
where the social interaction among two
children is observed and recorded on video
while performing a collaboration task. The
coupling of the children has to be performed
by the supervisors at school because they
know the children and can assess who can
work together. The actual test is performed
at school because there a large group of the
intended study population is available on a

18 19

daily basis. The purpose and procedure of the
study will be explained to and assessed by the
supervisor at school and an appointment will
be made to perform the study.

The children will be brought to a separate
classroom by their supervisor. The goal of the
game is explained through an instruction video
and rules will be explicitly mentioned. Using
a video instead of personal contact increases
the internal validity of the study significantly
because autistic children are very sensitive to
new people. It is important that the children
understand that they have to cooperate
to complete the game and the rules are
important to guide the children’s behaviour
during the game; making it appropriate and
measurable for the platform.

First it is explained that these robots move in
a particular pattern, than the robots execute
a predefined pattern. The children need to
describe this pattern and imitate it with one
hand above the table because the robots
will forget the pattern at a certain moment.
Research by Jahra on initiating cooperative
play [12] showed that describing the task in

words has a significant benefit in performing
the game, therefore the children are asked to
describe the pattern they have to make during
this demonstration phase. If the children know
the pattern the robots will stop moving.

The children are now asked to teach the
robots the pattern they’ve just practiced.
They have to collaborate for this task, because
the robots only react if the children make the
same movement. In three teaching sessions
with a different movement pattern the robots
will react differently to the hand movements of
the children. They can imitate the movement
exactly, perform another random movement
(counteract) or interpret the movement of
the children (enhance). If the children have
taught the robots the correct movement
pattern the task is completed. When the
robots are counteracting the children won’t
be able to finish the task. Then the task is
finished after approximately 3 minutes, this
was the maximum time a test took during the
pilot study.

20 21

The difficulty level of the patterns is dynamic.
To keep the children’s attention it is useful
to raise the difficulty level at every teaching
scenario. Pilot tests show that simple shapes
like circle, square and triangle differ enough
to keep the children challenged. The tests will
start with the circle, which is the easiest pattern.
The square is then introduced and after that
the triangle, which appeared to be the most
difficult pattern. Every couple will perform the
teaching game three times, where the robots
perform the three different interaction types in
controlled random order.

The supervisor can stay in the room while
the children play the game. He or she can
assist the children in performing the intended
hand movement, but not in the cooperative
element. The researcher will observe the
playing children in a separate room and record
moments of social interaction. These records
can provide guidance for the video analysis
afterwards and answer some of the sub
questions regarding the nature of the reaction
of the children and how they interpret the
different interaction behaviours.

Setting
Sint Marie in Eindhoven, with Juliane Cuperus
as contact, is “a remedial education centre
for research and treatment of children aged
from two years upwards, young people
and young adults who have problems with
communication”. They provide treatment
ranging from part-time to 24 hours a day. The
study population is present on a daily basis and
experts with much experience are available.

The autistic children are best addressed at
school, because this is a known environment
for them and the supervisors are available
there. In a separate room the game platform
is set up. The most appropriate room is an
empty classroom that is known by the children.
The amount of new impressions needs to be
limited to the game platform.

Both pilot and final test at the regular primary
schools were performed in the children’s
lunch room, although the pilot test had to shift
to the gymnastics room after three tests. All
children were familiar with the rooms.

20 21

Figure 9.  Setting at pilot test (left), setting at final test (right)

22 23

Measurement procedure
A cross-sectional study was performed where
the social interaction among two children
with ASD is observed and recorded on video
while performing three collaboration tasks by
interacting with a MAS of moving robots on
a table. Observation was used to collect data
because it is “the most appropriate method to
learn about the interaction between people”
[13]. The children should not be aware of
the tested variables. They had to be engaged
in the game. Social interaction is a rather
intuitive activity, so the children could not be
asked about it after the test. In order to get
to know to which extend interaction through
movement and teaching robots is an engaging
task the children were questioned afterwards
through a short open interview. One of the
confounds that had to be overcome was the
bias of the researcher. This was done by video
recording the full test and let it assess on self-
initiated social contacts (SISC) by an unbiased
expert.

Three types of behaviour of the interactive
MAS were compared. They were tested
in three tasks of teaching. During one of
the sessions the robots directly imitated the
movement if both children performed it with

one hand above the table. They waited for the
children having performed a full movement
pattern together and then started imitating;
stopping to imitate when the children stopped
performing the movement. In another
task the robots sabotaged (counteract) the
collaborative teaching attempts of the children
by performing a random movement pattern
different from the pattern the children were
performing. During yet another task the
robots responded to similar hand movements
of the children by extracting one of the
possible predefined movement patterns
and performing it. In this way the children’s
movements were enhanced.

Ideally the robots had to be able to recognize
the children’s hand movement through a video
camera providing a top view of the table. This
camera is connected to a PC. Through image
processing the hands of the children had to
be detected and their movement recorded
in terms of place, speed and acceleration.
The children were delegated to opposite
sides of the table and summoned to hold
one hand above the table to teach the robots
the movement. This enabled much easier
recognition of the children’s hand movements
separately. Detected patterns of both children

22 23

Independent variable

Interaction behaviour MAS

through movement

Imitate, counteract, enhance

Dependent variable

Social interaction

Self-initiated social contact ,SISC
(Legoff, 2004)

Extraneous variables

Children’s viewpoint
Age
Gender
Motor skills
Social skills
Test environment
Experience with robots
Collaboration game rules
Extend to which the collaboration game engages the children
Complexity of the task (pattern to teach)
Learning curve
Interventions by the supervisor

Figure 10.  Study variables

24 25

could be compared and if they were similar
the robots reacted as described before. If
the children’s movement patterns did not
correspond the robots would not react and
perform straightforward driving and collision
avoidance behaviour.

Eventually the autonomous platform was not
accurate enough. Therefore the robots were
steered through the laptop by the researcher,
mimicking the robots’ behaviour. This didn’t
change anything to the implementation of
the interaction scenario, but did decrease
the reliability of the implementation due to
the interpretation of the person steering
the robots. For the test with the autistic
children it is important that the steering of the
robots happens in a different room, avoiding
distraction from the children. This can be
done through the webcam that was originally
installed for the autonomous system pattern
recognition system.

Because the three different interaction
behaviours were tested directly after each
other it was most likely that the following
sessions were influenced by the previous
one. Therefore it was important that at least
all different orders were tested once. There

were six possible orders so at least six tests
were needed for a confident result. This
corresponds with 12 children that had to
perform the test. Due to time limitations it
was not possible to test with more children,
because it would at least double the amount
of video analyzing time.

Imitate 		 counteract 	 enhance
Imitate	 	 enhance	 counteract
Enhance 	 imitate 		 counteract
Enhance	 counteract	 imitate
Counteract	 imitate		 enhance
Counteract	 enhance	 imitate

During each teaching task the amount of
SISC was measured. This measurement tool
is developed by Legoff to measure social
interaction during therapy. In his research on
using Lego© as a therapeutic medium social
interaction is distinguished in three elements:
“(1) initiation of social contact with peers,
reflective of social interest and motivation
for social contact; (2) duration of social
interaction, which reflects the development
of communication and play skills; and (3)
decreases in autistic aloofness and rigidity, with
development of age-appropriate social and
play behaviours.” For this study mainly the first

24 25

element (SISC) is useful because element 2
and 3 are interesting for longitudinal studies
with more than one contact moment. The
duration of social interaction was nonetheless
considered to be interesting because it does
reflect a difference in quality of the interaction
between the children.

A SISC is counted if it meets the following
criteria:
“(1) it was unprompted and spontaneous;
(2) it was not part of a daily routine or required
activity;
(3) it involved either verbal or nonverbal
communication or a clear attempt to
communicate with a peer;
(4) the peer had to be of approximately the
same age or developmental level as the subject
(i.e., not a much older or younger child); and
(5) it was not a reciprocal response to another
child’s approach.” [1]

SISC is an easy way to measure social
interaction; suiting planning for data analysis.
The downside is that it heavily reduces the
quality of data. Therefore each recorded task
was cut into chunks of 15 seconds, which is the

longest social interaction measured between
the children from the pilot study. Each chunk
was rated on the length of SISC. This rating
is divided in four categories of social contact
with the SISC criteria:
1.	 No social contact
2.	 Short social contact (1 word or sentence)
3.	 Medium social contact (more than 1

sentence, less than 10 sec.)
4.	 Long social contact (10 sec. or more)

It would also be useful to code the content
of the social interaction (in short terms)
besides coding the intensity of SISC. This can
provide some qualitative insight in the effect
of the robots’ behaviour on the children’s
communication.

In previous studies a duration of 10 minutes
per child (or couple of children) appeared to
be successful in terms of getting familiar with
the game and having some time to play with
it. The pilot test showed that each session
takes approximately 15 minutes. Each task
takes about 2 to 3 minutes. In combination
with: the short explanation at the start, the
demonstration of the movement during and

26 27

short questioning at the end of the test; this
adds up to 15 minutes. The children start
losing concentration after 15 minutes, so it
was not possible to increase the amount of
tasks. With 6 tests to perform this could be
performed in a morning (from 9h to 12h).

Sampling
The study population is rather specific
and homogeneous. The main differences
within the population occur on the level of
development of the children. For the pilot test
at a primary school 2 couples were drawn
from three different groups (group 3, 4 and 5).
The couples were made by the corresponding
teacher. The pilot study showed that there’s a
clear difference between children of group 3,
4 or 5. Children of group 3 (age 6 - 7) have
difficulties with focussing on the task whereas
children of group 5 (age 8 - 9) are more aware
of the system. Typically developed children
from group 4 (age 7 – 8) appear to be most
suitable for the game. They can concentrate
on the collaborative task without trying to see
through the system.

Many regular primary schools in Eindhoven
were contacted to perform the actual test
with children in the right age group (age 6 – 8,

preferably group 4). Only primary school ‘De
Hasselbraam’ responded positively, offering to
test the robots with children from group 3.
This was not the ideal target group but at least
within the given boundaries.

The main criterion for the sample size relies on
the time available for testing and analyzing as
explained before. This means that 12 children
with ASD and development level of group 4
are required for this study. They are drawn
from the Sint Marie educational centre. During
a meeting with Juliane Cuperus (head of autism
department) and Marleen Vissers (expert on
young autistic children) it was decided that the
TOM-group (theory of mind) would be most
suitable for this test. The children are selected
and coupled for participation by the particular
supervisors. This is necessary to avoid a low
probability of social interaction between
the two children on beforehand. Social
relations are delicate for children with ASD
which makes any random sampling method
inappropriate, also due to the low amount of
tests that can be done. Besides, it is “common
to use purposive sampling to test something
about which little is known” [13].

26 27

Data analysis

The result of the test was a recorded video
accompanied with notes regarding the
nature of the children’s reactions. First the
video was analysed on the amount of SISC
per task (Appendix VII). This resulted in 18
values, 6 for every interaction behaviour type
(Table 1). To equalize the values they were
calculated to an amount of SISC per minute.
This kind of data gave a simplified insight in
how much social interaction had taken place
per interaction scenario (see Figure 11). The
figure suggests that counteracting behaviour
encourages social interaction most. Visually it
seems that the hypothesis can be confirmed.
A “Kruskal-Wallis one-way analysis of variance
by ranks” was used “for deciding whether
the independent samples are from a different
population” [14]. As shown in Figure 12 the
three scenarios aren’t significantly different.
So statistically the interaction behaviours
aren’t different in terms of encouraging
social contact, as shown by the overlapping
confidence intervals in Figure 11.

Imitate	 Counteract	 Enhance
0,00	 0,47		 2,55
2,36	 4,55		 3,83
2,81	 5,81		 3,61
6,43	 7,35		 3,33
2,83	 3,82		 4,00
2,91	 3,26		 2,12
Table 1: SISC per minute of 18 tasks

Figure 11.  Average SISC per minute for different interaction
behaviours with confidence levels

0

1,0

2,0

3,0

4,0

5,0

6,0

SISC / min

ImitateC ounteractE nhance

Figure 12.  Kruskal-Wallis analysis result

28 29

Assessing the social interaction through
counting the amount of SISC per minute
seemed not to reflect the richness of the
data that was recorded. So the length of the
interaction was implemented by differently
coding the video, as described in the previous
chapter in the measurement procedure. The
social interaction was categorized; measuring
frequencies over time slots.

Figure 13 shows the percentage from the total
amount of time slots that a certain kind of social
contact was measured. Figure 14 shows the
percentage from the total amount of time slots
of any kind of measured social contact. It can
be seen that the distribution over categories
differs per interaction behaviour in Figure 13.
Counteracting behaviour seems to provoke
shorter social contact whereas imitation
provokes longer social contact. In general it
can be seen that enhancing behaviour arouses
the least social contact and imitation and
counteracting don’t differ a lot. Interesting is
the difference between Figure 11 and Figure
14. It shows that when adding the element
of duration the mutual relations change clearly
and relate more to the observations.

This procedure provided 118 measurements
(N); enough to perform Chi-square tests.
The interaction scenarios were compared in
couples on the four SISC categories. None
of them differed significantly. Categorizing
the data in ‘no social contact’ and ‘any social
contact’ provided no significant result either
(Appendix IX) as can be seen in the confidence
intervals of Figure 14. It can be said though
that enhancing behaviour is most likely to
have a different effect on social interaction;
imitating and counteracting seem to have a
similar effect. In order to measure a significant
difference with enhancing behaviour 30 more
tests are needed, assuming that the current
results are valid.

A validating video analysis by an unbiased
student that was familiar with SISC showed
that the coding procedure leaves a little room
for interpretation. When comparing my
observations with the unbiased observations
they differ in 5% of the observations. This
would have been acceptable if the differences
were larger, but in this case this uncertainty
makes a big difference. It is interesting to see
that these differences are all in scenarios with
enhancing behaviour. The other scenarios are
as good as similarly rated.

28 29

0%

10%

20%

30%

40%

No social
contact

Short social

contact
Medium social

contact
Long social

contact

Imitate

Counteract

Enhance

Figure 13.  Frequency of categorized social contact per couple

50%

60%

70%

80%

90%

Any social contact

ImitateC ounteractE nhance
Figure 14.  Frequency of any social contact per couple

50%

60%

70%

80%

90%

Any social contact

ImitateC ounteractE nhance
Figure 15.  Frequency of any social contact per couple from
unbiased observations

30 31

The above described ways of gathering the
data involved the social interaction per couple
because than reciprocal communication
was included. The amount of social contact
per child was also measured though, to
see what the effect of the robots behaviour
was on the individuals. This data set (Figure
16 and Figure 17) clearly differed from the
one described above. Figure 16 shows a
fairly even distribution of categories of social
contact over the interaction behaviours. The
only conspicuous bar is the amount of short
social contact with enhancing behaviour.

Also when looking at the social contact per
individual child the interaction behaviours
don’t differ significantly (Appendix X). The
significances do show that again enhancing
behaviour is most likely to have a different
effect on social interaction.

When comparing Figure 14 and Figure 17, it
appears that they to show opposite results.
In both graphs it can be seen that enhancing
behaviour differs most. This is confirmed by
the calculated significances. The ones related
to comparing imitation and counteracting,
have more or less the same effect on the social
interaction between the children because α =
1,0 or close to it. Enhancing behaviour can
have a different effect on the social interaction
although the direction is unclear. In this case
it appears that enhancing behaviour slightly
encourages social interaction for the individual
child whereas the amount of social interaction
between the couples in general is reduced.

30 31

0%

10%

20%

30%

40%

No social contactS hort social
contact

Medium social
contact

Long social
contact

Imitate

Counteract

Enhance

40%

50%

60%

70%

An

y

 social contact

ImitateC ounteract Enhance

Figure 16.  Frequency of categories of social contact per child

Figure 17.  Frequency of any social contact per child

32 33

Conclusion

The quantitative data shows that there’s no
significant difference between the interaction
behaviours. So the relation between the MAS
interaction behaviour and the amount of social
interaction occurring during a collaborative
task can’t be quantified further.

The fact that on the qualitative level the graphs
suggest a different effect on social interaction
with enhancing behaviour is interesting, as well
as the suggested similarity between imitation
and counteracting. The negative effect of
enhancing behaviour on the social interaction
by a couple of children (+/- 10%) clearly
outweighs the positive effect on the individual
child (+/- 5%). But nothing can be said with
much certainty on this matter because the
unbiased observations changed the outcome
enough to shift the shape of the histogram.

The most valid explanation for the differences
and similarities between the interaction
behaviours should be sought in the
implementation of these behaviours. When
looking at the reactions of the children while

playing they found the robots ‘bad listeners’
mainly with the counteracting behaviour, but
also during imitating behaviour. Sometimes
the robots didn’t listen because the children
weren’t cooperating but unclear performance
of the patterns was also a big factor. The
overriding collision avoidance blurred the
pattern performance. So the robots were
actually performing the movement but this
wasn’t recognized by the children. With
enhancing behaviour the right pattern was
performed much quicker, increasing the
chance that one of the robots would perform
a recognizable pattern.

So it appears that imitation behaviour was
experienced as counteracting behaviour.
The fact that enhancing behaviour seems
to discourage social interaction therefore
strengthens the assumption that counteracting
behaviour encourages social interaction.

The fact that most of the children were
talking about the robots ‘listening’ or not and
reacted surprised if one robot did perform a

32 33

movement correctly shows that the task was
engaging. Some children left their place at the
table and started running around it trying to get
the attention of particular robots. The amount
of social interaction seemed to increase with
more movement. The children that sat calmly
at opposite sides of the table clearly interacted
less with each other and the robots. So it is
possible to assume that interaction through
movement enhances social interaction. It is
most likely that this can be verified through
existing literature.

The hypothesis that counteracting behaviour
would enhance social interaction most was
derived from the results of the test with the
lighting blocks [6]. There it was assumed that
imitating interaction between the blocks would
encourage social interaction, but eventually
counteracting behaviour provoked discussion
between the children resulting in more social
contact. It appears that this holds also for
interaction through movement and might be
the case for interaction during collaborative
tasks in general.

The results of this study do not lead to a relation
between the explorative character of multi-
agent games and the enhancement of social
interaction by the MAS. Exploration actually
seems to make them less communicative
because than the children get occupied with
exploring the system individually.

34 35

Discussion

The test provides interesting starting-points
for further investigation on interaction through
movement with multi-agent systems. It seems
that in this case counteracting and enhancing
interaction behaviour were rightfully
implemented. For correct implementation of
imitation behaviour the platform needs further
technological development.

Using the TiViPE software [8] for this appears
to be a promising solution in terms of image
processing. It was unfortunate that the
implementation for this project didn’t suit
the time schedule. But not only is the image
processing a factor in creating confident
imitation behaviour. The operation resolution
of the AdMoVeo is not accurate enough
for exact imitation. So solutions for direct
translation of human movements to robot
movements have to be investigated as well.
It is likely that there are ways to simulate
imitation. It would be interesting to investigate
this imitation simulation with AdMoVeo
robots. How can human movements be
directly imitated in an abstracted way?

In this study the factor of imitation was mainly
in the collaborative element in the game. This
is what the experts at Sint Marie found most
interesting, and saw as a possible supplement
to an existing education method regarding
imitation for TOM-groups (theory of mind).
Therefore it is still interesting to perform the
test with autistic children and see how the
different interaction behaviours affect the
social interaction.

For this test with autistic children it is important
that the method with a video introduction
is implemented to avoid the researcher’s
presence in the room. It was clear that the
presence of me (as the researcher) during the
tests at the primary schools had an impact on
the data. Some children were more occupied
with talking to me then performing the task.
This had a clear negative effect on the validity
of the test.

Another distracting factor seemed to be the
emergent behaviour of the moving robots
in the social interaction between normally
developed children of 6 years old. The
continuous motion of the robots requires full

34 35

attention, resulting in difficulties with focussing
on their collaborative task. A difference can
be seen with older children (7 or 8 year old):
they have less difficulty with focussing on the
task. So for children younger than the age of 7
it seems not advisable to implement a moving
multi-agent system for educative tasks.

An interesting experiment following this study
would be to change the scale of interaction.
In this study the space was restricted to a
table top. This was mainly done for practical
reasons, making technical implementation
feasible. But it would be interesting to
investigate the same game in an empty room
with more robots driving on the floor and
the children performing the movements with
their total body. This was the initial idea for
the described interaction scenario options. It
would improve the performance of patterns
by the robots because there would be less
overriding collision behaviour. The setup that
was tested now was too small for clear pattern
performance, although the recognition of
patterns is generally easier for autistic children
and overriding collision behaviour might less
of a problem.

36 37

Acknowledgements

To acquire the knowledge to perform this
research project many experts from within
the faculty but also from outside helped
me, thanks for that. I also want to thank the

teachers and children that were involved in
the tests from the two primary schools: ‘De
Tweesprong’ in Breda and ‘De Hasselbraam’
in Eindhoven.

36 37

References

1.	 Use of LEGO(c) as a Therapeutic Medium
for Improving. LeGoff, Daniel B. No. 5,
s.l. : Springer Science+Business Media,
Inc., October 2004, Journal of Autism and
Developmental Disorders, Vol. Vol. 34.

2.	 Modeling emotional movements for
design of social games with robots.
Barakova, E. 2009, Eindhoven University
of Technology.

3.	 Expressing and interpreting emotional
movements in social games with robots.
Barakova, E and Lourens, T. Eindhoven
University of Technology : s.n., 2009.

4.	 Using an emergent system concept in
designing interactive games for autistic
children. Barakova, E, et al. Eindhoven :
s.n., 2007. Bekker, T et al. Proc. Of IDC
07.

5.	 From spreading of behaviour to dyadic
interaction - a robot learns what to
imitate. Barakova, E and Vanderelst,
D. s.l. : International Journal of Intelligent
Systems, 2009, Vol. In press.

6.	 Social training of autistic children with
interactive intelligent agents. Barakova, E,
Gilessen, J and Feijs, L. 1, Eindhoven :
Imperial College Press, 2009, Journal of
Integrative Neuroscience, Vol. 8.

7.	 Alers, S. AdMoVeo: an Educational
Arduino Robot. [Online] Department of
Industrial Design, Eindhoven University,
2009. http://www.admoveo.nl/.

8.	 Lourens, T. TiViPE. [Online] TiViPE, 2009.
[Cited: 31 December 2009.] http://www.
tivipe.com/.

9.	 de Klein, R. The code project: your
development resource. Serial library for
C++. [Online] 13 November 2003.
[Cited: 10 November 2009.] http://www.
codeproject.com/KB/system/serial.aspx.

10.	Wobbrock, J, Wilson, A and Yang, L. $1
Unistrok Recognizer in JavaScript. [Online]
University of Washington and Microsoft
Research, 2007. [Cited: 5 December
2009.] http://depts.washington.edu/
aimgroup/proj/dollar/.

11.	Social Participation Among Pre-School
Children. Parten, Mildred B. 3, Minnesota
: University of Minnesota, October 1932,
The Journal of Abnormal and Social
Psychology, Vol. 27.

12.	Teaching children with autism to initiate
and sustain cooperative play. Jahra, E,
Eldevika, S and Eikesethb, S. Akershus
: Elsevier Science Ltd, 2000, Research in
Developmental Disabilities, Vol. 21, pp.
151–169. S0891-4222(00)00031-7.

13.	Kumar, Ranjit. Research Methodology:
A Step-by-Step Guide for Beginners.
London : SAGE publications, 1999.
0-7619-6213-1.

14.	Siegel, S and Castellan Jr., N J.
Nonparametric statistics for the behavioural
sciences. Singapore : McGraw-Hill Book
Co., 1988. 0-07-100326-6.

38 39

Appendix
I. Work schedule

38 39

40 41

II. AdMoVeo code
// AdMoVeo digital pins

#define encoderRight_Pin 2

#define buzzer_Pin 3

#define encoderLeft_Pin 4

#define speedRight_Pin 5

#define speedLeft_Pin 6

#define dirRight_Pin 7

#define dirLeft_Pin 8

#define ledBlue_Pin 9

#define ledRed_Pin 10

#define ledGreen_Pin 11

#define leftRight_Pin 12

#define frontRear_Pin 13

// AdMoVeo analog pins

#define line_Pin 2

#define distance_Pin 3

// AdMoVeo variables

#define LEFT 0

#define RIGHT 1

#define BOTH 2

#define FRONT 3

#define NONE 4

#define LINE 5

#define DISTANCE 8

// Behaviour variables

int leftinput = 0;

int rightinput = 0;

int lineLeft = 0;

int lineRight = 0;

int distanceFront = 0;

int distanceLeft = 0;

int distanceRight = 0;

int startLineLeft = 0;

int startLineRight = 0;

int lineThreshold = 175;

int collisionThreshold = 900;

int lineTime = 200;

int collisionTime = 300;

unsigned long moveTimer = millis();

char rightPattern = ‘q’;

char play = ‘0’;

boolean demo = true;

boolean patternstart = true;

//XBee variables

char values[5] = {

 ‘0’,’0’,’0’,’0’};

char message;

void setup(){

 // Serial communication configuration

 Serial.begin(57600);

 // AdMoVeo minimal pin configuration

pinMode(leftRight_Pin, OUTPUT);

digitalWrite(leftRight_Pin, HIGH);

pinMode(frontRear_Pin, OUTPUT);

digitalWrite(frontRear_Pin, HIGH);

pinMode(dirRight_Pin, OUTPUT);

digitalWrite(dirRight_Pin, HIGH);

pinMode(dirLeft_Pin, OUTPUT);

digitalWrite(dirLeft_Pin, HIGH);

analogWrite(speedRight_Pin, 0); // motor STOP

analogWrite(speedLeft_Pin, 0); // motor STOP

 startLineLeft = readSensor(LINE,LEFT);

 startLineRight = readSensor(LINE,RIGHT);

 analogWrite(buzzer_Pin,100);

 delay(50);

 analogWrite(buzzer_Pin,0);

 Serial.println(“setup”);

}

void loop(){

 // Waiting for the goal pattern

 while(rightPattern == ‘q’){

 play = ‘0’;

 if (Serial.available() > 0) {

 message = Serial.read();

 if (message == ‘c’ || message == ‘t’ || message

== ‘x’){

 rightPattern = message;

 }

 }

 }

 if (play != ‘p’){

 if (Serial.available() > 0) {

 play = Serial.read();

 }

 demo = true;

 }

 else {

 demo = false;

 }

 decideMove(checkSensors());

}

byte checkSensors(){

 lineLeft = readSensor(LINE,LEFT);

 lineRight = readSensor(LINE,RIGHT);

 distanceFront = readSensor(DISTANCE,FRONT);

 distanceLeft = readSensor(DISTANCE,LEFT);

 distanceRight = readSensor(DISTANCE,RIGHT);

 if(lineLeft > startLineLeft + lineThreshold ||

 lineLeft < startLineLeft - lineThreshold ||

 lineRight > startLineRight + lineThreshold ||

 lineRight < startLineRight - lineThreshold){

 // robot drives almost from the table

 return 0;

 }

 if(distanceFront < collisionThreshold ||

 distanceLeft < collisionThreshold ||

 distanceRight < collisionThreshold){

 // collision is close

 return 1;

 }

}

void decideMove(byte moves){

 switch(moves){

 case 0:

 //Serial.println(“avoidLine”);

 analogWrite(ledGreen_Pin,0);

 analogWrite(ledBlue_Pin,255);

40 41

 analogWrite(ledRed_Pin,0);

 avoidLine(lineLeft > startLineLeft + lineThreshold

 || lineLeft < startLineLeft - lineThreshold);

 break;

 case 1:

 //Serial.println(“avoidCollision”);

 analogWrite(ledGreen_Pin,0);

 analogWrite(ledBlue_Pin,255);

 analogWrite(ledRed_Pin,0);

 avoidCollision(distanceFront < collisionThreshold,

 distanceLeft < collisionThreshold,

 distanceRight < collisionThreshold);

 break;

 default:

 if (demo){

 if (rightPattern == ‘c’){

 setColor(‘g’);

 Drive(120,230);

 }

 if (rightPattern == ‘t’){

 setColor(‘g’);

 moveTriangle();

 }

 if (rightPattern == ‘x’){

 setColor(‘g’);

 moveSquare();

 }

 }

 else {

 serialDrive();

 }

 break;

 }

}

void serialDrive()

{

 // Receive pattern character and move

 if (Serial.available() > 0) {

 char prevMessage = message;

 message = Serial.read();

 if(prevMessage != message){

 patternstart = true;

 }

 }

 if (message == ‘c’){

 //Serial.println(“Circling”);

 if(message == rightPattern){

 setColor(‘g’);

 }

 else {

 setColor(‘r’);

 }

 Drive(120,230);

 }

 if (message == ‘t’){

 if(message == rightPattern){

 setColor(‘g’);

 }

 else {

 setColor(‘r’);

 }

 moveTriangle();

 }

 if (message == ‘x’){

 if(message == rightPattern){

 setColor(‘g’);

 }

 else {

 setColor(‘r’);

 }

 moveSquare();

 }

 if (message == ‘n’){

 //Serial.println(“n”);

 setColor(‘o’);

 Drive(170,170);

 }

 if (message == ‘q’){

 rightPattern = message;

 setColor(‘o’);

 Drive(0,0);

 }

 if (message == ‘p’){

 setColor(‘b’);

 Drive(0,0);

 Serial.print(“.”);

 }

}

void Drive(int LeftSpeed, int RightSpeed)

{

 //set direction

 if (LeftSpeed >= 0) digitalWrite(dirLeft_Pin, HIGH);

//forward

 else digitalWrite(dirLeft_Pin, LOW); //

backward

 if (RightSpeed >=0) digitalWrite(dirRight_Pin,

HIGH); //forward

 else digitalWrite(dirRight_Pin, LOW); //

backward

 // set speed

 analogWrite(speedLeft_Pin, abs(LeftSpeed));

 analogWrite(speedRight_Pin, abs(RightSpeed));

}

void setColor(char color){

 // Receive pattern character and move

 if (color == ‘r’){

 analogWrite(ledGreen_Pin,0);

 analogWrite(ledBlue_Pin,0);

 analogWrite(ledRed_Pin,255);

 }

 if (color == ‘g’){

 analogWrite(ledGreen_Pin,255);

 analogWrite(ledBlue_Pin,0);

 analogWrite(ledRed_Pin,0);

 }

 if (color == ‘b’){

 analogWrite(ledGreen_Pin,0);

 analogWrite(ledBlue_Pin,255);

 analogWrite(ledRed_Pin,0);

 }

 if (color == ‘o’){

42 43

 analogWrite(ledGreen_Pin,0);

 analogWrite(ledBlue_Pin,0);

 analogWrite(ledRed_Pin,0);

 }

}

void avoidLine(boolean left){

 // make a move to avoid the table border

 if (left){

 Drive(255,-255);

 delay(lineTime);

 }

 else{

 Drive(-255,255);

 delay(lineTime);

 }

}

void avoidCollision(boolean front, boolean left,

boolean right){

 // make a move to avoid collision

 if(front){

 Drive(-255,-255);

 delay(collisionTime/2);

 Drive(-255,255);

 delay(collisionTime);

 }

 if(right){

 Drive(-255,255);

 delay(collisionTime/2);

 }

 if(left){

 Drive(255,-255);

 delay(collisionTime/2);

 }

}

void setChannel(int selection)

{

 switch (selection){

 case LEFT:

 digitalWrite(frontRear_Pin,LOW);

 digitalWrite(leftRight_Pin,LOW);

 break;

 case RIGHT:

 digitalWrite(frontRear_Pin,LOW);

 digitalWrite(leftRight_Pin,HIGH);

 break;

 case FRONT:

 digitalWrite(frontRear_Pin,HIGH);

 digitalWrite(leftRight_Pin,LOW);

 break;

 case NONE:

 digitalWrite(frontRear_Pin,HIGH);

 digitalWrite(leftRight_Pin,HIGH);

 break;

 default:

 digitalWrite(frontRear_Pin,HIGH);

 digitalWrite(leftRight_Pin,HIGH);

 break;

 }

}

int readSensor(int Sensor, int Side)

{

 int returnData;

 setChannel(Side); // activate measurement channel

 switch (Sensor){

 case LINE:

 returnData = analogRead(line_Pin);

 break;

 case LIGHT:

 returnData = analogRead(light_Pin);

 break;

 case SOUND:

 returnData = analogRead(sound_Pin);

 break;

 case DISTANCE:

 delay[1]; // delay needed for reliable

measurement infrared

 returnData = analogRead(distance_Pin);

 break;

 }

 setChannel(NONE); // set channel to unused

channel, for power reasons

 return returnData;

}

void moveTriangle(){

 int forward = 800;

 int turn = 380;

 if (patternstart){

 moveTimer = millis();

 patternstart = false;

 }

 if(millis() - moveTimer < forward){

 Drive(170,170);

 }

 else if(millis() - moveTimer < forward+turn){

 Drive(-170,170);

 }

 else {

 moveTimer = millis();

 }

}

void moveSquare(){

 int forward = 800;

 int turn = 280;

 if (patternstart){

 moveTimer = millis();

 patternstart = false;

 }

 if(millis() - moveTimer < forward){

 Drive(170,170);

 //Serial.println(“forward”);

 }

 else if(millis() - moveTimer < forward+turn){

 Drive(-170,170);

 }

 else {

 moveTimer = millis();

 }

}

42 43

 III. Image processing code
import processing.video.*;

import processing.serial.*;

// Variable for capture device

Capture video;

color trackColor;

color trackColor2;

int[] arrayX1 = {

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int[] arrayY1 = {

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int trackX1 = 0;

int trackY1 = 0;

int[] arrayX2 = {

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int[] arrayY2 = {

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int trackX2 = 0;

int trackY2 = 0;

Serial myPort;

// Dollar, from http://depts.washington.edu/aimgroup/

proj/dollar/dollar.js

// http://depts.washington.edu/aimgroup/proj/dollar/

//

// Recognizer class constants

//

int NumTemplates = 16;

int NumPoints = 64;

float SquareSize = 250.0;

float HalfDiagonal = 0.5 * sqrt(250.0 * 250.0 + 250.0

* 250.0);

float AngleRange = 90.0;

float AnglePrecision = 2.0;

float Phi = 0.5 * (-1.0 + sqrt(5.0)); // Golden Ratio

String name1 = “unknown”;

String ratio1 = “1.0”;

String score1 = “0.0”;

String name2 = “unknown”;

String ratio2 = “1.0”;

String score2 = “0.0”;

int timer1;

int timelength1 = 4000;

int timer2;

int timelength2 = 3000;

int moveTimer;

float threshold = 0.8; // or 0.9 for imitation

//float threshold = 0.6; // for enhancing

Recognizer recognizer;

Recorder recorder;

Result result = null;

PFont font;

void setup()

{

 size(640, 480);

 myPort = new Serial(this, “COM7”, 57600);

 frameRate(30);

 colorMode(RGB,255,255,255,100);

 // Using the default capture device

 video = new Capture(this, width, height, 30);

 trackColor = color(170,95,103); // Start off tracking

for skin colour

 trackColor2 = color(170,95,103); // Start off tracking

for skin colour

 recognizer = new Recognizer();

 recorder = new Recorder();

 noFill();

 smooth();

 strokeWeight(4.0);

 stroke(0);

 font = loadFont(“ArialMT-12.vlw”);

 textFont(font);

 timer1 = millis();

 timer2 = millis();

}

void draw()

{

 colorTracking();

 recorder.update();

 recorder.draw();

 //drawPattern(0,255,255,0);

 //drawPattern(1,0,255,255);

 //drawPattern(2,255,0,255);

 if(result != null)

 {

 textAlign(CENTER, CENTER);

 fill(color(255));

 name1 = recorder.name1;

 ratio1 = str(recorder.ratio1);

 score1 = str(recorder.score1);

 name2 = recorder.name2;

 ratio2 = str(recorder.ratio2);

 score2 = str(recorder.score2);

 text(name1 + “ - “ + ratio1 + “, “ + score1, 10,

10, 200, 20);

 text(name2 + “ - “ + ratio2 + “, “ + score2, 430,

10, 200, 20);

 if(name1 == name2){

 text(“Collaboration”, 220, 10, 200, 20);

 if(name1 == “circle”){

 myPort.write(‘c’);

 /* remove for counteracting

 float number = random(-1,1);

 if(number >=0){

 myPort.write(‘t’);

44 45

 }

 else {

 myPort.write(‘x’);

 }

 */ //remove for counteracting

 }

 if(name1 == “triangle”){

 myPort.write(‘t’);

 /* remove for counteracting

 float number = random(-1,1);

 if(number >=0){

 myPort.write(‘c’);

 }

 else {

 myPort.write(‘x’);

 }

 */ //remove for counteracting

 }

 if(name1 == “x”){

 myPort.write(‘x’);

 /* remove for counteracting

 float number = random(-1,1);

 if(number >=0){

 myPort.write(‘c’);

 }

 else {

 myPort.write(‘t’);

 }

 */ //remove for counteracting

 }

 if(name1 == “- none - “){

 myPort.write(‘n’);

 }

 }

 }

}

void drawPattern(int n, int r, int g, int b){

 color c = color(r, g, b);

 for(int i = 1; i < recognizer.Templates[n].Points.

length; i++)

 {

 int shiftx = 640/2;

 int shifty = 480/2;

 stroke(c);

 line(recognizer.Templates[n].Points[i-1].X+shiftx,

recognizer.Templates[n].Points[i-1].Y+shifty,

 recognizer.Templates[n].Points[i].X+shiftx,

recognizer.Templates[n].Points[i].Y+shifty);

 }

}

void mousePressed() {

 // Save color where the mouse is clicked in trackColor

variable

 int loc = mouseX + mouseY*video.width;

 if (mouseX < video.width/2){

 trackColor = video.pixels[loc];

 }

 else {

 trackColor2 = video.pixels[loc];

 }

 recorder.points1 = new Point[0];

 recorder.points2 = new Point[0];

 recorder.recording1 = true;

 recorder.recording2 = true;

}

void keyPressed() {

 myPort.write(key);

}

void captureEvent(Capture camera)

{

 camera.read();

}

void colorTracking(){

 loadPixels();

 // Reset tracked coordinates

 trackX1 = 0;

 trackY1 = 0;

 trackX2 = 0;

 trackY2 = 0;

 // Draw the video image on the background

 image(video,0,0);

 // Local variables to track the color

 float closestDiff1 = 500.0f;

 int closestX1 = 0;

 int closestY1 = 0;

 float closestDiff2 = 500.0f;

 int closestX2 = 0;

 int closestY2 = 0;

 // Begin loop to walk through every pixel

 // Left half of the image

 for (int x = 0; x < video.width/2; x++) {

 for (int y = 0; y < video.height; y++) {

 int loc = x + y*video.width;

 // What is current color

 color currentColor = video.pixels[loc];

 float r1 = red(currentColor);

 float g1 = green(currentColor);

 float b1 = blue(currentColor);

 float r2 = red(trackColor);

 float g2 = green(trackColor);

 float b2 = blue(trackColor);

 // Using euclidean distance to compare colors

 float d = dist(r1,g1,b1,r2,g2,b2);

 // If current color is more similar to tracked color

than

 // closest color, save current location and current

difference

 if (d < closestDiff1) {

 closestDiff1 = d;

 closestX1 = x;

 closestY1 = y;

 }

 }

 }

 // Right half of the image

 for (int x = video.width/2; x < video.width; x++) {

44 45

 for (int y = 0; y < video.height; y++) {

 int loc = x + y*video.width;

 // What is current color

 color currentColor = video.pixels[loc];

 float r1 = red(currentColor);

 float g1 = green(currentColor);

 float b1 = blue(currentColor);

 float r2 = red(trackColor2);

 float g2 = green(trackColor2);

 float b2 = blue(trackColor2);

 // Using euclidean distance to compare colors

 float d = dist(r1,g1,b1,r2,g2,b2);

 // If current color is more similar to tracked color

than

 // closest color, save current location and current

difference

 if (d < closestDiff2) {

 closestDiff2 = d;

 closestX2 = x;

 closestY2 = y;

 }

 }

 }

 // Draw a circle at the tracked pixel

 ellipse(closestX1,closestY1,16,16);

 ellipse(closestX2,closestY2,16,16);

 // Store average tracked points over the latest 10

measurements from left and right hand

 bufMeasure(closestX1, closestY1, closestX2,

closestY2);

}

void bufMeasure(int x1, int y1, int x2, int y2){

 arrayX1 = append(arrayX1, x1);

 arrayY1 = append(arrayY1, y1);

 arrayX2 = append(arrayX2, x2);

 arrayY2 = append(arrayY2, y2);

 // Sum the [measureBuf] latest measured points

 int measureBuf = 15;

 if (arrayX1.length == arrayY1.length){

 if (arrayX1.length > measureBuf){

 arrayX1 = subset(arrayX1,1,measureBuf);

 arrayY1 = subset(arrayY1,1,measureBuf);

 }

 }

 else {

 println(“arrayX1 != arrayY1, “ + arrayX1.length +

“ != “ +arrayY1.length);

 }

 if (arrayX2.length == arrayY2.length){

 if (arrayX2.length > measureBuf){

 arrayX2 = subset(arrayX2,1,measureBuf);

 arrayY2 = subset(arrayY2,1,measureBuf);

 }

 }

 else {

 println(“arrayX2 != arrayY2, “ + arrayX2.length +

“ != “ +arrayY2.length);

 }

 // Remove extreme measurements

 trackX1 = removeExtreme(arrayX1);

 trackY1 = removeExtreme(arrayY1);

 trackX2 = removeExtreme(arrayX2);

 trackY2 = removeExtreme(arrayY2);

}

int removeExtreme(int[] copiedArray){

 for(int j = 0; j < 5; j++){

 int trackDiff = 0;

 int posDiff = 0;

 int copiedAvg = 0;

 // Get the copied array mean

 for (int i = 0; i < copiedArray.length; i++){

 copiedAvg += copiedArray[i];

 }

 copiedAvg /= copiedArray.length;

 // Calculate the value with maximum difference to

the mean

 for (int i = 0; i < copiedArray.length; i++){

 trackDiff = abs(copiedAvg - copiedArray[i]);

 if(abs(copiedAvg - copiedArray[i]) > trackDiff){

 trackDiff = abs(copiedAvg - copiedArray[i]);

 posDiff = i;

 }

 }

 // Remove the value with maximum difference

 copiedArray[posDiff] = copiedArray[copiedArray.

length-1];

 copiedArray = shorten(copiedArray);

 }

 // Get the final mean

 int copiedAvg = 0;

 for (int i = 0; i < copiedArray.length; i++){

 copiedAvg += copiedArray[i];

 }

 copiedAvg /= copiedArray.length;

 return copiedAvg;

}

// simple class for recording points

class Recorder

{

 Point [] points1;

 Point [] points2;

 boolean recording1;

 boolean recording2;

 String name1;

 float score1;

 float ratio1;

 String name2;

 float score2;

 float ratio2;

46 47

 Recorder()

 {

 points1 = new Point[0];

 points2 = new Point[0];

 recording1 = false;

 recording2 = false;

 }

 void update()

 {

 // Record and recognize left hand

 if(recording1)

 {

 // Record array of points to compare

 points1 = (Point[])append(points1, new Point(

trackX1, trackY1));

 // Pattern recognition of left hand

 if (points1.length > 10){

 // Start pattern recognition if more than 10 points

are recorded

 result = recognizer.Recognize(points1);

 if (result.Ratio != 1.0) //result.Ratio > threshold

&&

 {

 name1 = result.Name;

 score1 = result.Score;

 ratio1 = result.Ratio;

 recording1 = false;

 timer1 = millis();

 }

 if (millis() - timer1 > timelength1){

 name1 = result.Name;

 score1 = result.Score;

 ratio1 = result.Ratio;

 recording1 = false;

 timer1 = millis();

 }

 }

 }

 else

 {

 // Reset recorded pattern

 points1 = new Point[0];

 recording1 = true;

 }

 // Record and recognize right hand

 if(recording2)

 {

 // Record array of points to compare

 points2 = (Point[])append(points2, new Point(

trackX2, trackY2));

 // Pattern recognition of left hand

 if (points2.length > 10){

 // Start pattern recognition if more than 10 points

are recorded

 result = recognizer.Recognize(points2);

 if (result.Ratio != 1.0) //result.Ratio > threshold

&&

 {

 name2 = result.Name;

 score2 = result.Score;

 ratio2 = result.Ratio;

 recording2 = false;

 timer2 = millis();

 }

 if (millis() - timer2 > timelength2){

 name2 = result.Name;

 score2 = result.Score;

 ratio2 = result.Ratio;

 recording2 = false;

 timer2 = millis();

 }

 }

 }

 else

 {

 // Reset recorded pattern

 points2 = new Point[0];

 recording2 = true;

 }

 }

 void draw()

 {

 // Draw the recorded path of the left hand

 color c1 = color(255);

 if(recording1)

 {

 c1 = color(255, 0, 0);

 }

 if(points1.length > 1)

 {

 for(int i = 1; i < points1.length; i++)

 {

 stroke(c1);

 line(points1[i-1].X, points1[i-1].Y,

 points1[i].X, points1[i].Y);

 }

 }

 // Draw the recorded path of the right hand

 color c2 = color(255);

 if(recording2)

 {

 c2 = color(255, 0, 0);

 }

 if(points2.length > 1)

 {

 for(int i = 1; i < points2.length; i++)

 {

 stroke(c2);

 line(points2[i-1].X, points2[i-1].Y,

 points2[i].X, points2[i].Y);

 }

 }

 }

}

float Infinity = 1e9;

// What follows here is a translation of the javascript

46 47

to java.

// There is probably a better way to do it, but this

works.

// Base point class.

class Point

{

 float X;

 float Y;

 Point(float x, float y)

 {

 X = x;

 Y = y;

 }

 float distance(Point other)

 {

 return dist(X, Y, other.X, other.Y);

 }

}

class Rectangle

{

 float X;

 float Y;

 float Width;

 float Height;

 Rectangle(float x, float y, float width, float height)

 {

 X = x;

 Y = y;

 Width = width;

 Height = height;

 }

}

// A template holds a name and a set of reduced points

that represent

// a single gesture.

class Template

{

 String Name;

 Point [] Points;

 Template(String name, Point [] points)

 {

 Name = name;

 Points = Resample(points, NumPoints);

 Points = RotateToZero(Points);

 Points = ScaleToSquare(Points, SquareSize);

 Points = TranslateToOrigin(Points);

 }

}

class Result

{

 String Name;

 float Score;

 float Ratio;

 Result(String name, float score, float ratio)

 {

 Name = name;

 Score = score;

 Ratio = ratio;

 }

}

class Recognizer

{

 Template [] Templates = {

 };

 Recognizer()

 {

 // The triangle, circle or rectangle can be recognized

 // triangle

 Point [] point0 = {

 new Point(137,139),new Point(135,141),new

Point(133,144),new Point(132,146),

 new Point(130,149),new Point(128,151),new

Point(126,155),new Point(123,160),

 new Point(120,166),new Point(116,171),new

Point(112,177),new Point(107,183),

 new Point(102,188),new Point(100,191),new

Point(95,195),new Point(90,199),

 new Point(86,203),new Point(82,206),new

Point(80,209),new Point(75,213),

 new Point(73,213),new Point(70,216),new

Point(67,219),new Point(64,221),

 new Point(61,223),new Point(60,225),new

Point(62,226),new Point(65,225),

 new Point(67,226),new Point(74,226),new

Point(77,227),new Point(85,229),

 new Point(91,230),new Point(99,231),new

Point(108,232),new Point(116,233),

 new Point(125,233),new Point(134,234),new

Point(145,233),new Point(153,232),

 new Point(160,233),new Point(170,234),new

Point(177,235),new Point(179,236),

 new Point(186,237),new Point(193,238),new

Point(198,239),new Point(200,237),

 new Point(202,239),new Point(204,238),new

Point(206,234),new Point(205,230),

 new Point(202,222),new Point(197,216),new

Point(192,207),new Point(186,198),

 new Point(179,189),new Point(174,183),new

Point(170,178),new Point(164,171),

 new Point(161,168),new Point(154,160),new

Point(148,155),new Point(143,150),

 new Point(138,148),new Point(136,148)

 };

 AddTemplate(“triangle”, point0);

 // circle

 Point [] point1 = {

 new Point(127,141),new Point(124,140),new

Point(120,139),new Point(118,139),

 new Point(116,139),new Point(111,140),new

Point(109,141),new Point(104,144),

 new Point(100,147),new Point(96,152),new

Point(93,157),new Point(90,163),

 new Point(87,169),new Point(85,175),new

48 49

Point(83,181),new Point(82,190),

 new Point(82,195),new Point(83,200),new

Point(84,205),new Point(88,213),

 new Point(91,216),new Point(96,219),new

Point(103,222),new Point(108,224),

 new Point(111,224),new Point(120,224),new

Point(133,223),new Point(142,222),

 new Point(152,218),new Point(160,214),new

Point(167,210),new Point(173,204),

 new Point(178,198),new Point(179,196),new

Point(182,188),new Point(182,177),

 new Point(178,167),new Point(170,150),new

Point(163,138),new Point(152,130),

 new Point(143,129),new Point(140,131),new

Point(129,136),new Point(126,139)

 };

 AddTemplate(“circle”, point1);

 // x

 Point [] point2 = {

 new Point(87,142),new Point(89,145),new

Point(91,148),new Point(93,151),

 new Point(96,155),new Point(98,157),new

Point(100,160),new Point(102,162),

 new Point(106,167),new Point(108,169),new

Point(110,171),new Point(115,177),

 new Point(119,183),new Point(123,189),new

Point(127,193),new Point(129,196),

 new Point(133,200),new Point(137,206),new

Point(140,209),new Point(143,212),

 new Point(146,215),new Point(151,220),new

Point(153,222),new Point(155,223),

 new Point(157,225),new Point(158,223),new

Point(157,218),new Point(155,211),

 new Point(154,208),new Point(152,200),new

Point(150,189),new Point(148,179),

 new Point(147,170),new Point(147,158),new

Point(147,148),new Point(147,141),

 new Point(147,136),new Point(144,135),new

Point(142,137),new Point(140,139),

 new Point(135,145),new Point(131,152),new

Point(124,163),new Point(116,177),

 new Point(108,191),new Point(100,206),new

Point(94,217),new Point(91,222),

 new Point(89,225),new Point(87,226),new

Point(87,224), new Point(87,220),

 new Point(87,216),new Point(87,210),new

Point(87,206),new Point(87,200),

 new Point(87,194),new Point(87,190),new

Point(87,185),new Point(87,182),

 new Point(87,178),new Point(87,172),new

Point(87,169),new Point(87,165),

 new Point(87,161),new Point(87,158),new

Point(87,155),new Point(87,150),

 new Point(87,146),new Point(87,142)

 };

 AddTemplate(“x”, point2);

 }

 Result Recognize(Point [] points)

 {

 points = Resample(points, NumPoints);

 points = RotateToZero(points);

 points = ScaleToSquare(points, SquareSize);

 points = TranslateToOrigin(points);

 float best = Infinity;

 float sndBest = Infinity;

 int t = -1;

 for(int i = 0; i < Templates.length; i++)

 {

 float d = DistanceAtBestAngle(points, Templates[i],

-AngleRange, AngleRange, AnglePrecision);

 if(d < best)

 {

 sndBest = best;

 best = d;

 t = i;

 }

 else if(d < sndBest)

 {

 sndBest = d;

 }

 }

 float score = 1.0 - (best / HalfDiagonal);

 float otherScore = 1.0 - (sndBest / HalfDiagonal);

 float ratio = otherScore / score;

 // The threshold is arbitrary, and not part of the

original code.

 if(t > -1 && score > threshold)

 {

 return new Result(Templates[t].Name, score, ratio

);

 }

 else

 {

 return new Result(“- none - “, 0.0, 1.0);

 }

 }

 int AddTemplate(String name, Point [] points)

 {

 Templates = (Template []) append(Templates, new

Template(name, points));

 int num = 0;

 for(int i = 0; i < Templates.length; i++)

 {

 if(Templates[i].Name == name)

 {

 num++;

 }

 }

 return num;

 }

 void DeleteUserTemplates()

 {

 Templates = (Template [])subset(Templates, 0,

NumTemplates);

 }

}

float PathLength(Point [] points)

{

 float d = 0.0;

 for(int i = 1; i < points.length; i++)

48 49

 {

 d += points[i-1].distance(points[i]);

 }

 return d;

}

float PathDistance(Point [] pts1, Point [] pts2)

{

 if(pts1.length != pts2.length)

 {

 recorder.recording1 = false;

 recorder.recording2 = false;

 println(“Lengths differ. “ + pts1.length + “ != “ +

pts2.length);

 return Infinity;

 }

 float d = 0.0;

 for(int i = 0; i < pts1.length; i++)

 {

 d += pts1[i].distance(pts2[i]);

 }

 return d / (float)pts1.length;

}

Rectangle BoundingBox(Point [] points)

{

 float minX = Infinity;

 float maxX = -Infinity;

 float minY = Infinity;

 float maxY = -Infinity;

 for(int i = 1; i < points.length; i++)

 {

 minX = min(points[i].X, minX);

 maxX = max(points[i].X, maxX);

 minY = min(points[i].Y, minY);

 maxY = max(points[i].Y, maxY);

 }

 return new Rectangle(minX, minY, maxX - minX,

maxY - minY);

}

Point Centroid(Point [] points)

{

 Point centriod = new Point(0.0, 0.0);

 for(int i = 1; i < points.length; i++)

 {

 centriod.X += points[i].X;

 centriod.Y += points[i].Y;

 }

 centriod.X /= points.length;

 centriod.Y /= points.length;

 return centriod;

}

Point [] RotateBy(Point [] points, float theta)

{

 Point c = Centroid(points);

 float Cos = cos(theta);

 float Sin = sin(theta);

 Point [] newpoints = {

 };

 for(int i = 0; i < points.length; i++)

 {

 float qx = (points[i].X - c.X) * Cos - (points[i].Y - c.Y)

* Sin + c.X;

 float qy = (points[i].X - c.X) * Sin + (points[i].Y -

c.Y) * Cos + c.Y;

 newpoints = (Point[]) append(newpoints, new

Point(qx, qy));

 }

 return newpoints;

}

Point [] RotateToZero(Point [] points)

{

 Point c = Centroid(points);

 float theta = atan2(c.Y - points[0].Y, c.X - points[0].X);

 return RotateBy(points, -theta);

}

Point [] Resample(Point [] points, int n)

{

 float I = PathLength(points) / ((float)n -1.0);

 float D = 0.0;

 Point [] newpoints = {

 };

 Stack stack = new Stack();

 for(int i = 0; i < points.length; i++)

 {

 stack.push(points[points.length -1 - i]);

 }

 while(!stack.empty())

 {

 Point pt1 = (Point) stack.pop();

 if(stack.empty())

 {

 newpoints = (Point [])append(newpoints, pt1);

 continue;

 }

 Point pt2 = (Point) stack.peek();

 float d = pt1.distance(pt2);

 if((D + d) >= I)

 {

 float qx = pt1.X + ((I - D) / d) * (pt2.X - pt1.X);

 float qy = pt1.Y + ((I - D) / d) * (pt2.Y - pt1.Y);

 Point q = new Point(qx, qy);

 newpoints = (Point [])append(newpoints, q);

 stack.push(q);

 D = 0.0;

 }

 else {

 D += d;

 }

 }

 if(newpoints.length == (n -1))

 {

 newpoints = (Point [])append(newpoints, points[

points.length -1]);

50 51

 }

 return newpoints;

}

Point [] ScaleToSquare(Point [] points, float sz)

{

 Rectangle B = BoundingBox(points);

 Point [] newpoints = {

 };

 for(int i = 0; i < points.length; i++)

 {

 float qx = points[i].X * (sz / B.Width);

 float qy = points[i].Y * (sz / B.Height);

 newpoints = (Point [])append(newpoints, new

Point(qx, qy));

 }

 return newpoints;

}

float DistanceAtBestAngle(Point [] points, Template T,

float a, float b, float threshold)

{

 float x1 = Phi * a + (1.0 - Phi) * b;

 float f1 = DistanceAtAngle(points, T, x1);

 float x2 = (1.0 - Phi) * a + Phi * b;

 float f2 = DistanceAtAngle(points, T, x2);

 while(abs(b - a) > threshold)

 {

 if(f1 < f2)

 {

 b = x2;

 x2 = x1;

 f2 = f1;

 x1 = Phi * a + (1.0 - Phi) * b;

 f1 = DistanceAtAngle(points, T, x1);

 }

 else

 {

 a = x1;

 x1 = x2;

 f1 = f2;

 x2 = (1.0 - Phi) * a + Phi * b;

 f2 = DistanceAtAngle(points, T, x2);

 }

 }

 return min(f1, f2);

}

float DistanceAtAngle(Point [] points, Template T, float

theta)

{

 Point [] newpoints = RotateBy(points, theta);

 return PathDistance(newpoints, T.Points);

}

Point [] TranslateToOrigin(Point [] points)

{

 Point c = Centroid(points);

 Point [] newpoints = {

 };

 for(int i = -0; i < points.length; i++)

 {

 float qx = points[i].X - c.X;

 float qy = points[i].Y - c.Y;

 newpoints = (Point [])append(newpoints, new

Point(qx, qy));

 }

 return newpoints;

}

50 51

IV. Serial communication in C++
// ControlAdMoveo.cpp written by Niko Vegt

#define STRICT

#include <tchar.h>

#include <time.h>

#include <stdio.h>

#include <string.h>

#include <windows.h>

#include “Serial.h”

int ShowError (LONG lError, LPCTSTR lptszMessage)

{

	 // Generate a message text

	 TCHAR tszMessage[256];

	 wsprintf(tszMessage,_T(“%s\n(error code %d)”), lptszMessage, lError);

	 // Display message-box and return with an error-code

	 ::MessageBox(0,tszMessage,_T(“Listener”), MB_ICONSTOP|MB_

OK);

	 return 1;

}

void wait (int seconds)

{

 clock_t endwait;

 endwait = clock() + seconds * CLOCKS_PER_SEC ;

 while (clock() < endwait) {}

}

int __cdecl _tmain (int /*argc*/, char** /*argv*/)

{

	 printf(“Setup serial port\n”);

 CSerial serial;

	 LONG lLastError = ERROR_SUCCESS;

	 bool waiting = true;

 // Attempt to open the serial port (COM8)

	 do

	 {

		 if (waiting)

		 {

			 printf(“Waiting for serial port\n”);

			 int status = serial.CheckPort(_T(“COM8”));

			 printf(“Serial status: %d\n”, status);

			 waiting = false;

		 }

	 }

	 while(serial.CheckPort(_T(“COM8”)) != 0);

 lLastError = serial.Open(_T(“COM8”),0,0,false);

	 if (lLastError != ERROR_SUCCESS)

		 return ::ShowError(serial.GetLastError(), _T(“Unable to

open COM-port”));

	 printf(“Serial port opened\n”);

 // Setup the serial port (57600,N81) using hardware handshaking

 serial.Setup(CSerial::EBaud57600,CSerial::EData8,CSerial::EParNone,CSerial::E

Stop1);

 serial.SetupHandshaking(CSerial::EHandshakeXbee);

	 serial.SetEventChar(27);

 // The serial port is now ready and we can send/receive data. If

 // the following call blocks, then the other side doesn’t support

 // hardware handshaking.

	 // Wait for setup from AdMoveo

	 printf(“Waiting for AdMoveo setup (reset)\n”);

	 lLastError = serial.WaitEvent();

	 if (lLastError != ERROR_SUCCESS)

	 return ::ShowError(serial.GetLastError(), _T(“Unable to wait for a

COM-port event.”));

	 bool fLoop = true;

	 while(true)

	 {

		 do

		 {

			 // Send motor side

52 53

			 printf(“Sending L\n”);

			 lLastError = serial.Write(“l”);

			 if (lLastError != ERROR_SUCCESS)

			 return ::ShowError(serial.GetLastError(),

_T(“Unable to send data”));

			 // Handle data receive event

			 if (CSerial::EEventRecv)

				 fLoop = false;

		 }

		 while(fLoop);

		 wait[1];

		 do

		 {

			 // Send motor speed

			 printf(“Sending 100\n”);

			 lLastError = serial.Write(“150”);

			 if (lLastError != ERROR_SUCCESS)

			 return ::ShowError(serial.GetLastError(),

_T(“Unable to send data”));

			 // Handle data receive event

			 if (CSerial::EEventRecv)

				 fLoop = false;

		 }

		 while(fLoop);

		 wait[1];

		 do

		 {

			 // Send motor side

			 printf(“Sending R\n”);

			 lLastError = serial.Write(“r”);

			 if (lLastError != ERROR_SUCCESS)

			 return ::ShowError(serial.GetLastError(),

_T(“Unable to send data”));

			 // Handle data receive event

			 if (CSerial::EEventRecv)

				 fLoop = false;

		 }

		 while(fLoop);

		 wait[1];

		 do

		 {

			 // Send motor speed

			 printf(“Sending -100\n”);

			 lLastError = serial.Write(“020”);

			 if (lLastError != ERROR_SUCCESS)

			 return ::ShowError(serial.GetLastError(),

_T(“Unable to send data”));

			 // Handle data receive event

			 if (CSerial::EEventRecv)

				 fLoop = false;

		 }

		 while(fLoop);

		 wait[1];

	 }

 // Close the port again

 serial.Close();

 return 0;

}

//	 Serial.h - Definition of the CSerial class

//

//	 Copyright (C) 1999-2003 Ramon de Klein (Ramon.de.Klein@ict.nl)

//

// This library is free software; you can redistribute it and/or

// modify it under the terms of the GNU Lesser General Public

// License as published by the Free Software Foundation; either

// version 2.1 of the License, or (at your option) any later version.

//

// This library is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU

52 53

// Lesser General Public License for more details.

//

// You should have received a copy of the GNU Lesser General Public

// License along with this library; if not, write to the Free Software

// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

	 // Handshaking (the changed part)

	 typedef enum

	 {

		 EHandshakeUnknown		 = -1,	 // Unknown

		 EHandshakeOff			 = 0 , 	

// No handshaking

		 EHandshakeHardware		 = 1,	 // Hardware

handshaking (RTS/CTS)

		 EHandshakeSoftware		 = 2,	 // Software

handshaking (XON/XOFF)

		 EHandshakeXbee			 = 3 	

// [TU/e] Added for Xbee communication

	 }

	 EHandshake;

//	 Serial.cpp - Implementation of the CSerial class

//

//	 Copyright (C) 1999-2003 Ramon de Klein (Ramon.de.Klein@ict.nl)

//

// This library is free software; you can redistribute it and/or

// modify it under the terms of the GNU Lesser General Public

// License as published by the Free Software Foundation; either

// version 2.1 of the License, or (at your option) any later version.

//

// This library is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU

// Lesser General Public License for more details.

//

// You should have received a copy of the GNU Lesser General Public

// License along with this library; if not, write to the Free Software

// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

//

LONG CSerial::SetupHandshaking (EHandshake eHandshake) // (the changed part

of the library)

{

	 // Reset error state

	 m_lLastError = ERROR_SUCCESS;

	 // Check if the device is open

	 if (m_hFile == 0)

	 {

		 // Set the internal error code

		 m_lLastError = ERROR_INVALID_HANDLE;

		 // Issue an error and quit

		 _RPTF0(_CRT_WARN,”CSerial::SetupHandshaking -

Device is not opened\n”);

		 return m_lLastError;

	 }

	 // Obtain the DCB structure for the device

	 CDCB dcb;

	 if (!::GetCommState(m_hFile,&dcb))

	 {

		 // Obtain the error code

		 m_lLastError = ::GetLastError();

		 // Display a warning

		 _RPTF0(_CRT_WARN,”CSerial::SetupHandshaking -

Unable to obtain DCB information\n”);

		 return m_lLastError;

	 }

	 // Set the handshaking flags

	 switch (eHandshake)

	 {

	 case EHandshakeOff:

		 dcb.fOutxCtsFlow = false;			

// Disable CTS monitoring

		 dcb.fOutxDsrFlow = false;			

54 55

// Disable DSR monitoring

		 dcb.fDtrControl = DTR_CONTROL_DISABLE;	

// Disable DTR monitoring

		 dcb.fOutX = false;				

// Disable XON/XOFF for transmission

		 dcb.fInX = false;				

// Disable XON/XOFF for receiving

		 dcb.fRtsControl = RTS_CONTROL_DISABLE;	

// Disable RTS (Ready To Send)

		 break;

	 case EHandshakeHardware:

		 dcb.fOutxCtsFlow = true;			

// Enable CTS monitoring

		 dcb.fOutxDsrFlow = true;			

// Enable DSR monitoring

		 dcb.fDtrControl = DTR_CONTROL_HANDSHAKE;	

// Enable DTR handshaking

		 dcb.fOutX = false;				

// Disable XON/XOFF for transmission

		 dcb.fInX = false;				

// Disable XON/XOFF for receiving

		 dcb.fRtsControl = RTS_CONTROL_HANDSHAKE;	

// Enable RTS handshaking

		 break;

	 case EHandshakeSoftware:

		 dcb.fOutxCtsFlow = false;			

// Disable CTS (Clear To Send)

		 dcb.fOutxDsrFlow = false;			

// Disable DSR (Data Set Ready)

		 dcb.fDtrControl = DTR_CONTROL_DISABLE;	

// Disable DTR (Data Terminal Ready)

		 dcb.fOutX = true;				

// Enable XON/XOFF for transmission

		 dcb.fInX = true;				

// Enable XON/XOFF for receiving

		 dcb.fRtsControl = RTS_CONTROL_DISABLE;	

// Disable RTS (Ready To Send)

		 break;

	 case EHandshakeXbee:

		 dcb.fOutxCtsFlow = false;			

// Disable CTS (Clear To Send)

		 dcb.fOutxDsrFlow = false;			

// Disable DSR (Data Set Ready)

		 dcb.fDtrControl = DTR_CONTROL_ENABLE;		

// Disable DTR (Data Terminal Ready)

		 dcb.fOutX = true;				

// Enable XON/XOFF for transmission

		 dcb.fInX = true;				

// Enable XON/XOFF for receiving

		 dcb.fRtsControl = RTS_CONTROL_ENABLE;		

// Disable RTS (Ready To Send)

		 break;

	 default:

		 // This shouldn’t be possible

		 _ASSERTE(false);

		 m_lLastError = E_INVALIDARG;

		 return m_lLastError;

	 }

	 // Set the new DCB structure

	 if (!::SetCommState(m_hFile,&dcb))

	 {

		 // Obtain the error code

		 m_lLastError = ::GetLastError();

		 // Display a warning

		 _RPTF0(_CRT_WARN,”CSerial::SetupHandshaking -

Unable to set DCB information\n”);

		 return m_lLastError;

	 }

	 // Return successful

	 return m_lLastError;

} 

54 55

1 2

34

5
6

V. Image scenarios

56 57

VI.Test protocol
Install platform

Webcam

Table with tape (robot vs. hand area)

Lighting

Place video camera

Startup software (for webcam and robot communication)

--

Prepare for children

	 Put robots in waiting mode

Pick up children from classroom

Start recording

Introduce myself and the robots

	 They can move

	 They can listen to your hands

Explain the game

	 Purpose

		 Teach the robots a movement

	 Means

		 Rehearse the movement

		 Perform the movement together

	 Rules

		 Don’t touch the robots

		 One hand above the table

		 Stand at opposite sides of the table

Play the game (with right interaction behaviour)

Demonstrate the movement

	 Reset the robots

	 Stimulate the children to perform the movement

together

	 Steer the robots

	 Stop the robots if movement is taught or if 3 minutes

have passed

	 Repeat the task

Play the game again (with right interaction behaviour)

	 Take pictures during the game

And again (with right interaction behaviour)

Ask how they liked the game

Stop recording (check video camera status)

Thank the children for cooperation and bring back to classroom

--

56 57

VII. Video analysis sheet 1

58 59

VIII. Video analysis sheet 2
start

end

Name:

.2

.5

.1

.5

.8

.8

.5

.3

.2

.9

.4

.5

.5

.1

.3

.7

.7

.9

58 59

IX. Video analysis results 2 (children combined)

60 61

60 61

62 63

X. Video analysis results 2 (children separate)

62 63

64

